Introduction 000000 Active Data 0000000 Discussion 00 Conclusion 000

Active Data A Data-Centric Approach to Data Life-Cycle Management

Anthony Simonet¹ Gilles Fedak¹ Matei Ripeanu² Samer Al-Kiswany²

¹Inria, ENS Lyon, University of Lyon ²University of British Columbia

November 18th, 2013

Introduction	Active Data	Discussion	Conclusion
			000
	Outli	ine	

Introduction

Data Life Cycle Management Use-case Requirements

Active Data

Active Data: principles & features Exemple: Globus Online and iRODS

Discussion

Advantages Limitations

Conclusion Related works Conclusion

Introduction	Active Data	Discussion	Conclusion
•00000	0000000	00	000
	Big D	Data	

- Science and Industry have become data-intensive
 - Volume of data produced by science and industry grows exponentially
 - How to store this *deluge* of data?
 - How to extract knowledge and sense?
 - How to make data valuable?
- Some examples
 - ► CERN's Large Hadron Collider: 1.5PB/week
 - Large Synoptic Survey Telescope, Chile: 30 TB/night
 - Billion edge social network graphs
 - Searching and mining the Web

A. Simonet(Inria)

Active Data (PDSW'13)

Data Life Cycle

Data Life Cycle

- Creation/Acquisition
- Transfer
- Replication
- Disposal/Archiving

Definition

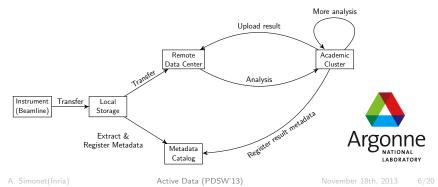
The life cycle is the course of operational stages through which data pass from the time when they enter a system to the time when they leave it.

Data Life Cycle Management

Complicated scenarios

- Execution of workflow
- Complex interactions between software
- Need to quickly react to operational events

Ad-hoc task-centric approaches


- Hard to program, maintain and debug
- No formal specification
- Complicates interactions between systems

Introduction	Active Data	Discussion	Conclusion
000000			

Data Life Cycle Use-case

Example: the Advanced Photon Source at Argonne National Lab

- ▶ 100TB of raw data per day
- Raw data are preprocessed and registered in a Globus dataset catalog
- Data are analyzed by various applications
- Results are stored in the dataset catalog and shared

Use-case

Vs

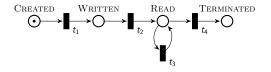
Task Centric

- Independent scripts
- ► Hard to program, maintain, verify
- Coarse granularity

Data Centric

- Express data-dependancies
- Cross data-center coordination
- User-level fault-tolerance
- Incremental processing

Requirements


Challenges: a perfect system should...

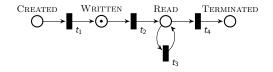
- Simply represent the life cycle of data distributed across different data centers and systems
- Simplify DLM modeling and reasoning
- Hide the complexity resulting from using different infrastructures and systems
- Be easy to integrate with existing systems

System programmers expose their system's internal data life cycle with a model based on Petri Nets.

A life cycle model is made of Places and Transitions

Each token has a unique identifier, corresponding to the actual data item's.

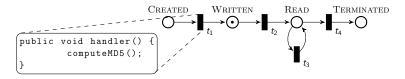
A. Simonet(Inria)


Active Data (PDSW'13)

Active Data principles

System programmers expose their system's internal data life cycle with a model based on Petri Nets.

A life cycle model is made of **Places** and **Transitions**



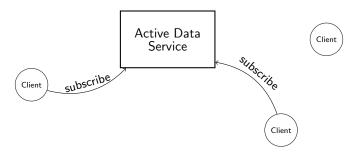
A transition is fired whenever a data state changes.

System programmers expose their system's internal data life cycle with a model based on Petri Nets.

A life cycle model is made of Places and Transitions

Code may be plugged by clients to transitions. It is executed whenever the transition is fired.

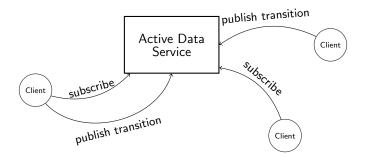
Active Data (PDSW'13)


Active Data features

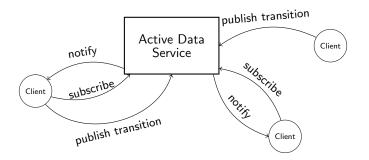
The Active Data programming model and runtime environment:

- Allows to react to life cycle progression
- Exposes transparently distributed data sets
- Can be integrated with existing systems
- Has scalable performance and minimum overhead over existing systems

Introduction	Active Data	Discussion	Conclusion
	0000000		
		ntation	
	Impleme	ntation	


- ▶ Prototype implemented in Java (≃ 2,800 LOC)
- Client/Service communication is Publish/Subscribe
- 2 types of subscription:
 - Every transitions for a given data item
 - Every data items for a given transition

Introduction	Active Data	Discussion	Conclusion
000000		00	000


Implementation

- Several ways to publish transitions
 - Instrument the code
 - Read the logs
 - Rely on an existing notification system
- The service orders transitions by time of arrival

Introduction	Active Data	Discussion	Conclusion
	000000		000
		a na statu	
	Impleme	ntation	

- Clients run transition handler code locally
- Transition handlers are executed
 - Serially
 - In a blocking way
 - In the order transitions were published

Introduction	Active Data	Discussion	Conclusion
000000	0000000	00	000

Performance evaluation: Throughput

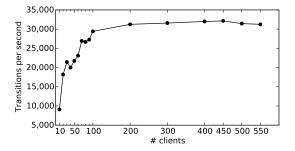


Figure: Average number of transitions per second handled by the Active Data Service

Clients publish 10,000 transitions in a row without pausing.

A. Simonet(Inria)

Active Data (PDSW'13)

Introduction	Active Data	Discussion	Conclusion
000000	0000000	00	000

Performance evaluation: Throughput

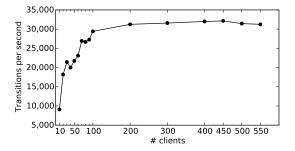


Figure: Average number of transitions per second handled by the Active Data Service

The prototype scales up to 30,000 transitions per seconds.

A. Simonet(Inria)

Active Data (PDSW'13)

Intro	uctiv	
IIIIII		

Conclusion 000

Exemple: Data Provenance

Definition

The complete history of data life cycle derivations and operations.

- Assess the quality of data
- Keep track of the origin of data over time
- Specialized Provenance Aware Storage Systems

Conclusion 000

Exemple: Data Provenance

Definition

The complete history of data life cycle derivations and operations.

- Assess the quality of data
- Keep track of the origin of data over time
- Specialized Provenance Aware Storage Systems

 \longrightarrow What about heterogeneous systems?

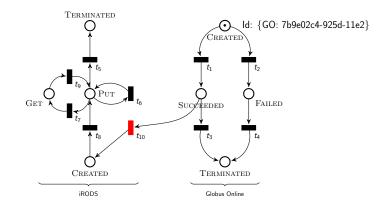
Conclusion 000

Exemple: Data Provenance

Definition

The complete history of data life cycle derivations and operations.

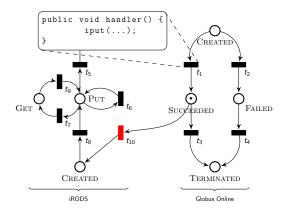
- Assess the quality of data
- Keep track of the origin of data over time
- Specialized Provenance Aware Storage Systems

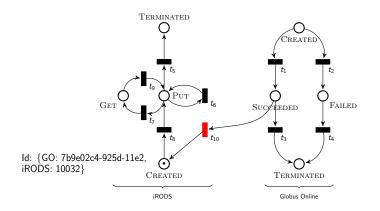

 \longrightarrow What about heterogeneous systems?

Example with Globus Online and iRODS

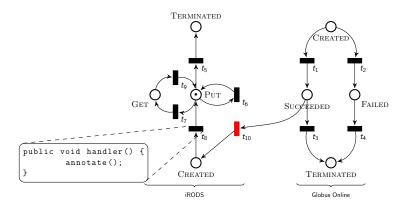
File transfer service

Data store and metadata catalog




 Introduction
 Active Data
 Discussion
 Conclusion

 000000
 000000
 00
 000


Exemple: Globus Online and iRODS


```
$ imeta ls -d test/out test 4628
AVUs defined for dataObj test/out_test_4628:
attribute: GO_FAULTS
value: 0
_ _ _ _
attribute: GO_COMPLETION_TIME
value: 2013-03-21 19:28:41Z
_ _ _ _
attribute: GO_REQUEST_TIME
value: 2013-03-21 19:28:17Z
_ _ _ _
attribute: GO_TASK_ID
value: 7b9e02c4-925d-11e2-97ce-123139404f2e
_ _ _ _
attribute: GO SOURCE
value: go#ep1/~/test
_ _ _ _
attribute: GO DESTINATION
value: asimonet#fraise/~/out_test_4628
```

Introduction	Active Data	Discussion	Conclusion
000000	0000000	• 0	000
	Advan	tages	

- Simple and graphical way to program DLM operations
- Allows to formally verify some properties of data life cycles
- Easy coordination between systems
- Easy to scale
- Easy to debug
- Easy fault tolerance
- Fine-grain interaction with data life cycle

Introduction	Active Data	Discussion	Conclusion
000000	0000000	○●	000
	Limita	ations	

- Complexity to reason in terms of life cycle events
- Lack of standard

Related works

Data-centric parallel processing

- Programing models:
 - MapReduce and higher level abstractions: PigLatin, Twister
 - Incremental systems: MapReduce-Online, Percolator, Chimera, Nephele
 - Other models with implicit parallelism: Swift, Dryad, Allpairs
- Storage systems
 - BitDew
 - MosaStore
 - Provenance Aware Storage Systems
 - Active Storage

Introduction	Active Data	Discussion	Conclusion
			000
	Concli	icion	
	CUICI	USION .	

Active Data is...

- Data-centric & Event-driven
- System-level data integration

What's next?

- Advanced representation of operations that consume and produce data: represent data derivation
- Data collection abilities
- Distributed implementation of the Publish/Subscribe layer

Introduction 000000 Active Data

Discussion 00 Conclusion

Thank you!

Questions?

Inria booth #2116

A. Simonet(Inria)

Active Data (PDSW'13)

November 18th, 2013 20/20