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Big Data
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I Science and Industry have become data-intensive

I Volume of data produced by science and industry

grows exponentially
I How to store this deluge of data?
I How to extract knowledge and sense?
I How to make data valuable?

I Some examples

I CERN’s Large Hadron Collider: 1.5PB/week
I Large Synoptic Survey Telescope, Chile: 30 TB/night
I Billion edge social network graphs
I Searching and mining the Web



Cyber-Infrastructures for Data-Intensive Science
Infrastructures are globally distributed, heterogeneous and complex.
Example: the Advanced Photon Source experiment workflow.
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→ Assemblage of infrastructures that have very different characteristics
(cost, administrative policy, local network and interconnection,
performance).
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Emergence of Data-Oriented Programming Models

Programmers need abstractions to exploit these complicated
infrastructures. Programming models become implicitly parallel:

I MapReduce

I AllPairs

I Pregel

I GraphLab

I Phœnix

I Ysmart

I Hive

I Spark

I Twister

I Pig
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Example: Evolution of the MapReduce Programming Model

360 C. Doulkeridis, K. Nørvåg
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Fig. 3 Taxonomy of MapReduce improvements for efficient query processing

– Lack of interactive or real-time processing: MapReduce
is designed as a highly fault-tolerant system for batch
processing of long-running jobs on very large data sets.
However, its very design hinders efficient support for
interactive or real-time processing, which requires fast
processing times. The reason is that to guarantee fault-
tolerance, MapReduce introduces various overheads that
negatively impact its performance. Examples of such
overheads include frequent writing of output to disk (e.g.,
between multiple jobs), transferring big amounts of data
in the network, limited exploitation of main memory,
delays for job initiation and scheduling, extensive com-
munication between tasks for failure detection. However,
numerous applications require fast response times, inter-
active analysis, online analytics, and these requirements
are hardly met by the performance of MapReduce.

– Lack of support for n-way operations: Processing n-way
operations over data originating from multiple sources is
not naturally supported by MapReduce. Such operations
include (among others) join, union, intersection, and can
be binary operations (n = 2) or multi-way operations
(n > 2). Taking the prominent example of a join, many
analytical tasks typically require accessing and process-
ing data from multiple relations. In contrast, the design
of MapReduce is not flexible enough to support n-way
operations with the same simplicity and intuitiveness as
data coming from a single source (e.g., single file).

4 MapReduce improvements

In this section, an overview is provided of various methods
and techniques present in the existing literature for improv-
ing the performance of MapReduce. All approaches are cat-
egorized based on the introduced improvement. We organize

the categories of MapReduce improvements in a taxonomy,
illustrated in Fig. 3.

Table 2 classifies existing approaches for improved proces-
sing based on their optimization objectives. We determine the
primary objective (marked with ♠ in the table), and then, we
also identify secondary objectives (marked with ♦).

4.1 Data access

Efficient access to data is an essential step for achieving
improved performance during query processing. We identify
three subcategories of data access, namely indexing, inten-
tional data placement, and data layouts.

4.1.1 Indexing

Hadoop++ [36] is a system that provides indexing function-
ality for data stored in HDFS by means of User-defined Func-
tions (UDFs), i.e., without modifying the Hadoop framework
at all. The indexing information (called Trojan Indexes) is
injected into logical input splits and serves as a cover index
for the data inside the split. Moreover, the index is created
at load time, thus imposing no overhead in query process-
ing. Hadoop++ also supports joins by co-partitioning data
and colocating them at load time. Intuitively, this enables the
join to be processed at the map side, rather than at the reduce
side (which entails expensive data transfer/shuffling in the
network). Hadoop++ has been compared against HadoopDB
and shown to outperform it [36].

HAIL [37] improves the long index creation times of
Hadoop++, by exploiting the n replicas (typically n = 3)
maintained in Hadoop by default for fault-tolerance and by
building a different clustered index for each replica. At query
time, the most suitable index to the query is selected, and the
particular replica of the data is scanned during the map phase.

123

Figure: Taxonomy of MapReduce improvements for efficient query processing (source:
Doulkeridis et al., 2014).

→ People do not program data analysis without high-level
abstractions anymore.
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Data Management Systems

Data Management System

A software system that performs one or more management
operations on data as part of an application, such as storage,
transfer, filtering, analysis.

Data management systems also provide high-level abstractions:

I High-level APIs to access heterogeneous resources

I Transparent data placement and replication

I Transparent fault tolerance

I Abstractions for mutating data

I New unstructured databases

7/45

Anthony Simonet(Inria) Ph.D Defense July 8th, 2015



Task-centric vs Data-centric
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Workflow & dataflow systems are used to coordinate these
systems.

Task Centric Data Centric
I Task sequence

vs

I Data-dependancy
I Implicit control flow I Explicit control flow
I Monitor task completion I Monitor data production
I Coarse granularity I Very fine granularity
I Hard to program, maintain, verify I Direct link between data product & task

Swift, DAGMan, Pegasus Dryad

→ Data intensive applications should be driven by data.

→ Infrastructure details must fade away, allowing programmers to focus on

their analytics.



Data Provenance

Data provenance

The complete history of derivations and treatments throughout the
life of data.

Recording and storing provenance:

I Helps preserving the quality of scientific data over time;

I Allows optimizations (recover vs regenerate);

I Is old research, but a new trend: scientists want to keep track
of where their data sets come from.

I “The Open Provenance Model” (Moreau et. al, 2007)

I “Provenance-Aware Storage Systems” (Muniswamy-Reddy et. al,
2006)

I “The requirements of using provenance in e-science experiments”
(Groth et. al, 2007)
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Data Life Cycle: Denition

All of these management operations form the Life Cycle of data.

Definition 1

The Data Life Cycle is the course of operational stages through
which data pass from the time when they enter a system to the
time when they leave it.

I Creation/Acquisition

I Transfer

I Replication

I Disposal/Archiving

We need a rigorous approach for data management on
heterogeneous distributed infrastructures.
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Challenges with Data Life Cycle

More data is:

I more machines

I more disks

I more unexpected events

As the volume of data grows, managing the life cycle of distributed
data requires more abstractions and the cooperation of more
systems:

I Handling the complexity of infrastructures

I Handling the complexity of data management systems

I Being able to recover from unexpected situations

I Being able to exploit infrastructures at their best

I Allow cross-system optimizations
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Challenges with Data Life Cycle: Related Works

Some attempts at addressing data life cycle management:
I “Addressing big data issues in scientific data infrastructure”

(Demchenko et. al, 2013)

I “Storage and Data Life Cycle Management in Cloud Environments
with FRIEDA” (Ramakrishnan et. al, 2015)

But:

I Until now, there has been no model for representing data life
cycles formally in systems and across systems

I We need a model for specifying and programming data
management applications
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Objectives

This thesis aims at making distributed data life cycle management
rigorous, easier and more efficient.

1. Offer a formal meta-model for representing the life cycle of
distributed data in any system and across systems;

2. Define a model to provide a unified view of the same data in
different systems and infrastructures;

3. Offer this unified view of the life cycle to users and programs
with a programmable environment;

4. Propose a programming model that allows to develop data
management applications by reacting to life cycle events,
using the meta-model implementation;
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Methodology

I A formal approach:
I Propose a model for representing the life cycle of data inside

and across systems
I Analyze data management systems, identify the features that

must be modeled
I Extensions of Petri Networks to construct a suitable

meta-model

I An experimental approach:
I Prototype implementation as a Java library (GPL)
I Performance evaluation on Grid’5000
I Evaluation of the programming model through usage scenarios

and applications
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Active Data principles
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System programmers expose their system’s internal data life cycle with
a model based on Petri Nets.
A life cycle model is made of Places and Transitions

•
Created

t1

Written

t2

Read

t3

t4

Terminated

public void handler () {

computeMD5 ();

}

lo
ca
l→

/f
il
e.
tx
t

Each token has a unique identifier, corresponding to the actual data
item’s.
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System programmers expose their system’s internal data life cycle with
a model based on Petri Nets.
A life cycle model is made of Places and Transitions

Created
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Read

t3

t4

Terminated

public void handler () {

computeMD5 ();

}
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Code may be plugged by clients to transitions.
It is executed whenever the transition is fired.



Composition
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Offers a unified view of data in different systems. . .
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Composition
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. . . and keeps track of identifiers.
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Life Cycle Meta Model

Petri Networks are a natural fit for representing life cycle models.

Definition 2
A Petri Network is 5-tuple PN = (P,T ,F ,W ,M0) where:

I P = {p1, p2, . . . , pm} is a finite set of places represented by circles;

I T = {t1, t2, . . . , tn} is a finite set of transitions represented by rectangles;

I F ⊆ (P × T ) ∪ (T × P) is a set of oriented arcs between places and
transitions and between transitions and places;

I Places in a Petri Net may contain tokens represented by •;
I W : F → N+ is a weight function which indicates how many tokens every

transition consumes and how many tokens it produces;

I M0 : P → N is a function that indicates the initial marking of places.
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Life Cycle Meta Model

Life cycle models are Petri Networks with additional elements. . .

Definition 3

A data life cycle model is a 6-tuple LC = (P,T ∪ T ′,F ∪ F ′,G ,W ,M0)
which represent respectively a set of places, transitions, arcs, inhibitor
arcs, a weight function and an initial marking.

. . . for supporting data life cycle features:

I Identification

I Replication

I Composition

I Termination
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Active Data API
First, Active Data needs to know the life cycle model of applications.
Users construct an object-oriented representation of the LCM:

1 // Instantiate a Life Cycle Model

2 LifeCycleModel model = new LifeCycleModel("storage");

3
4 // Add places , transitions and arcs

5 Place created = model.getStartPlace ();

6 Place written = model.addPlace("Written");

7 Place terminated = model.getEndPlace ();

8 ...

9 Transition write = model.addTransition("Write");

10 Transition delete = model.addTransition("Delete");

11 ...

12 model.addArc(created , write);

13 model.addArc(write , written);

Then, systems must notify Active Data when they created new data:

1 // Publish the new life cycle

2 ActiveDataClient client = ActiveDataClient.getInstance ();

3 LifeCycle lc = client.createAndPublishLifeCycle(model , "12345");

After that, Active Data will maintain the state of this data item and be
able to receive transition publications.
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Subscribing to transitions
Clients can react to DLC progress by subscribing code called transition
handler. Active Data offers two ways of subscribing transition handlers:

I Subscribing to a transition for any data item

1 // Subscribe to the transition

2 TransitionHandler myHandler = new TransitionHandler () {

3 public void handler(Transition transition , bool isLocal , Token[] ↘
→inTokens , Token[] outTokens) {

4 System.out.println("Reacting to transition " + transition.getName ());

5 }

6 }

7 client.subscribeTo(write , myHandler);

I Subscribing to any transition for a specific data item

1 // Subscribe to all transitions of the life cycle

2 TransitionHandler myHandler = new TransitionHandler () {

3 public void handler(Transition transition , bool isLocal , Token[] ↘
→inTokens , Token[] outTokens) {

4 System.out.println("Reacting to transition " + transition.getName () + ↘
→" for life cycle " +

5 inTokens[0].getUid ());

6 }

7 };

8 client.subscribeTo(lc , myHandler);
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Publishing & Querying

Data management systems must notify Active Data of operations they
perform on Data. This is called publishing a transition and allows Active
Data to update the state of the life cycle:

1 // Publish a transition

2 client.publishTransition(write , lc);

From a partial view (local identifier in a single system), Active Data
allows to examine the global state of a data item (every token on every
place).

1 // Query the complete state of another life cycle

2 LifeCycle lc = client.getLifeCycle("storage", "12345");

Clients can now look beyond their scope.
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System Design

Active Data
Service

Client

publish transition

Client

subscribe

n
otify
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Figure: Architecture of Active Data: clients (data management systems and users)
communicate with a centralized service in a Publish/Subscribe fashion.
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Execution Model

Active Data’s execution model
I is asynchronous, based on Publish/Subscribe

I any client can be publisher and subscriber
I facilitates deployment on uncooperative infrastructures
I the service maintains a queue of transitions for each subscriber
I Active Data orders handler execution by publication time

I allows to run transition handlers anywhere

I does not guarantee if or when transition handlers will be
executed

I allows transition handlers to publish transitions
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Token Tags & Guarded Execution

Systems can generate a very large number of notifications.
I Active Data allows Tags to be attached to tokens

I Then clients can subscribe their code to be executed only for tokens
having certain tags (Guarded Execution)

Tags can be any string:
I File type, e.g. “JPG”, “BINARY”.

I Data collections

I Remote information, e.g. “Test A passed”.

Tags can be attached:
I On the server side, with no client intervention (Taggers)

I On the client side

Filtering is performed by the server.
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System Integration
Multiple intrusive and non-intrusive methods for making systems
“Active Data” enabled:

Instrumentation

main.c

Notification systems

DLM system
B

Listener

Log processing

Log file

Scrapper
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System Integration

27/45

Anthony Simonet(Inria) Ph.D Defense July 8th, 2015

Five data management systems are already Active Data-enabled.
I BitDew

I inotify

I iRODS

I Globus Online

I Hadoop & HDFS
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Micro benchmarks: Experimental set up

1http://www.grid5000.fr
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All experiments have been performed on two
clusters of the Grid’5000 experimental testbed1.

Cluster (Site) Griffon (Nancy) Suno (Sophia)

Nodes 92 45

CPUs
2 × 4-core

Intel Xeon L5420
@ 2.5Ghz

2 × 4-core
Intel Xeon E5520

@ 2.26GHz
Memory 16GB 32GB
Storage 320GB hard drive 2 × 300GB hard drives
Network Gigabit Ethernet
Operating system Debian Linux 3.2

http://www.grid5000.fr


Micro benchmarks: Transition publication throughput
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Figure: Average number of transitions handled by the Active Data Service per second
with a varying number of clients. Each client publishes 10,000 transitions without
pausing between iterations.
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Micro benchmarks: Response Time & Overhead

Response time
med 90th centile std dev

Local 0.77 ms 0.81 ms 18.68 ms
Eth. 1.25 ms 1.45 ms 12.97 ms

Overhead Eth.
w/o AD with AD
38.04 s 40.6 s (4.6%)

Table: Response time in milliseconds for life cycle creation and publication, transition
publication and overhead measured using BitDew file transfers with and without
Active Data.
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Micro benchmarks
We run the Hadoop TeraSort benchmark with a 1TB data set, 280
mappers and 70 reducers.
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Figure: Number of transitions published each second during the Hadoop Terasort
execution.

Maximum: 196 transitions per second.
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Evaluation: Usage Scenarios

We evaluate the expressivity of the programming model with 4
usage scenarios:

I Storage cache (writing distributed applications based on the
data life cycle)

I Collaborative sensor network (managing data sets distributed
across systems or infrastructures)

I Data provenance (using a unified life cycle for recording
provenance across systems)

I Incremental MapReduce (optimizing an existing system for
coping with dynamic data)

The use-cases also demonstrate how Active Data can improve
existing systems by extending their scope to the whole application.
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Use-Case: Incremental MapReduce
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Once a system is Active Data-enabled, it can cope with dynamic data by
subscribing to modification transitions.
Can we make BitDew MapReduce incremental by just changing a few lines of
code?

I Workers can observe all modifications of their input chunks

I When the job is re-executed, they can process only the modified chunks

Created
t1 Ready

t2

Started
t3Completed

t4

Terminated Invalid
t5

t6

t7

t8

public void handler () {

if(local & chunk)

addTag("dirty");

}

Master

public void handler () {

if(! local & mine(chunk))

addTag("dirty");

}

Workers
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Usage Scenarios: Incremental MapReduce
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1. We measure the whole execution once

2. We modify a fraction of the input chunks and measure the
time to re-run the job

Word count benchmark:

I 10 mappers

I 5 reducers

I 3.2 GB input file

I 200 16MB-chunks files

Fraction modified 20% 40% 60% 80%
Update time 27% 49% 71% 94%

Table: Incremental MapReduce: time to update
the result compared with the fraction of the data
set modified.

Significant speedup with less than 2% of the code changed
thanks to Active Data.
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The Advanced Photon Source
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Data-intensive distributed application involving
multiple software

I 3 to 5TB of data per week on a single detector

I 3 tools involved:

I Globus Transfers
I Globus Catalog
I Swift

I Tasks are launched manually

Globus Catalog Globus 

Detector Local Storage Compute Cluster

1. Local
Transfer

2. Extract
Metadata

3. Globus
Transfer

4. Swift Parallel Analysis
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Data-intensive distributed application involving
multiple software

I 3 to 5TB of data per week on a single detector

I 3 tools involved:

I Globus Transfers
I Globus Catalog
I Swift

I Tasks are launched manually

Globus Catalog Globus 

Detector Local Storage Compute Cluster

1. Local
Transfer

2. Extract
Metadata

3. Globus
Transfer

4. Swift Parallel Analysis

What is inefficient in this workflow?
I Many error-prone tasks are performed manually

I Users can’t monitor the whole process at once

I Small failures are difficult to detect

I A system alone can’t recover from failures caused outside its scope



Goals

We want to use Active Data to achieve the following goals:

I End-to-end progress monitoring

I Automation

I Error discovery & recovery

I Sharing & notifications
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Data Surveillance Framework
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Life Cycle View

File transferFile Dataset Metadata

Guard

Code Execution

} Tagged Tokens

Notification

Framework features:

I Single namespace for all the files,
datasets and metadata manipulated by
the workflow

I High-level life cycle-centered view of
data

I Runtime data tagging system
I Custom user reaction to data progress

I Custom code execution
I Custom notifications

I Powerful filters based on data tags



APS Experiment Life Cycle Model

40/45

Anthony Simonet(Inria) Ph.D Defense July 8th, 2015

Created Start transfer
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I Single view from detector to analysis

I Each system has been modeled separately and
then composed
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Example scenario

Recover from system-wide errors: faulty acquired files are detected
only after Swift fails to process them.

In this situation, the user manually:

I Drops the whole dataset

I Removes any associated file and metadata

I Re-acquire the dataset using the same parameters
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public void handler () {

removeFromDataCatalog ();

removeFromSharedStorage ();

remove ();

client.publish("Detector.End");

notifyUser ();

}

“Failure-corrupted” ∈ x

public void handler () {

restart_acquisition ();

}
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public void handler () {

removeFromDataCatalog ();

removeFromSharedStorage ();

remove ();

client.publish("Detector.End");

notifyUser ();

}

“Failure-corrupted” ∈ x

public void handler () {

restart_acquisition ();

}
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Conclusion
This thesis tackles the problem of managing large-scale data sets
on hybrid infrastructures, with a formal and an experimental
approach:

I We studied the characteristics of applications and devised the
first meta-model to represent them

I We proposed Active Data, implementation of the model that
brings an end-to-end view of applications to programs and
users

I We proposed a programming model for managing distributed
data sets

I We evaluated the programming model with micro-benchmarks
and usage scenarios

I We confronted Active Data to a real-life application in
collaboration with ANL
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Perspectives

There is always more to be done:

I Provenance recording

I Data traceability

I Cross-system optimizations
I Cloud service deployment

I Asma Ben Cheikh (University of Tunis)

I Verification

45/45

Anthony Simonet(Inria) Ph.D Defense July 8th, 2015



Thank you!

Questions?
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